更多>>精华博文推荐
更多>>人气最旺专家

王万之

领域:凤凰社

介绍:一般有12s、16s、18s、21s、26s、32s、40s、50s、60s。...

张学康

领域:中国涪陵网

介绍:DISCUSS讨论平等的谈话多分享环节多自我的分享优势视角赋权and充权引导青少年正视内心,挖掘潜能,正面反馈,自行寻找解决方案或目标。利来最给利的网站,利来最给利的网站,利来最给利的网站,利来最给利的网站,利来最给利的网站,利来最给利的网站

利来官方网站w66利来
本站新公告利来最给利的网站,利来最给利的网站,利来最给利的网站,利来最给利的网站,利来最给利的网站,利来最给利的网站
oaw | 2019-01-16 | 阅读(932) | 评论(703)
不过“填补法”需要先填回去再挖掉,这样的反复对学生的思维能力要求较高。【阅读全文】
利来最给利的网站,利来最给利的网站,利来最给利的网站,利来最给利的网站,利来最给利的网站,利来最给利的网站
5ok | 2019-01-16 | 阅读(19) | 评论(394)
海滨旅游度假区温泉度假区滑雪度假区高尔夫度假区第二节旅游度假区的发展历程从出现时间的先后来看,温泉旅游度假区出现最早,随后依次出现海滨、滑雪以及其它类型的旅游度假区。【阅读全文】
w44 | 2019-01-16 | 阅读(809) | 评论(783)
宫殿坐落在山上,俯瞰着城市。【阅读全文】
eqb | 2019-01-16 | 阅读(113) | 评论(702)
2015年3月国家发改委、国开行《关于推进开发性金融支持政府和社会资本合作有关工作的通知》2015年4月财政部《政府和社会资本合作项目财政承受能力论证指引》的通知2015年5月国务院转发《关于妥善解决地方政府融资平台公司在建项目后续融资问题意见的通知》2015年5月,国务院转发《关于在公共服务领域推广政府和社会资本合作模式指导意见的通知》2015年6月财政部《关于进一步做好政府和社会资本合作项目示范工作的通知》2015年7月国家发改委《关于进一步鼓励和扩大社会资本投资建设铁路的实施意见》标志性文件1、《政府和社会资本合作法》:共七章五十九条。【阅读全文】
ul4 | 2019-01-16 | 阅读(956) | 评论(380)
CHAPTER5CryptographyZHQMZMGMZMFM—GJuliusCaesarKXJEYUREBEZWEHEWRYTUHEYFSKREHEGOYFIWTTTUOLKSYCAJPOBOTEIZONTXBYBWTGONEYCUZWRGDSONSXBOUYWRHEBAAHYUSEDQ—tems,’vealreadyseeninChapter3,‘Protocols’,cryptographyhasoftenbeenusedtoprotectthewrongthings,’llse,thecomputersec’talwaysunderstandtheavailablecryptotools,andcryptopeopledon’,suchasdifferentprofessionalbackgrounds(computerscienceversusmathematics)anddiffer-entresearchfunding(governmentshavetriedtopromotecomputersecurityresearchwhilesuppressingcryptography).,sheworkedforafewyearsinacountrywhere,foreconomicreasons,they’dshortenedtheirmedical,【阅读全文】
kvs | 2019-01-15 | 阅读(39) | 评论(815)
A.损害招标人、其他投标人或者国家、集体、公民的合法利益,造成直接经济损失数额在十万元以上的B.串通投标的中标人卖标、参与串通投标的其他投标人获取“好处费”、“补偿”等,违法所得数额在二十万元以上的C.中标项目金额在一百万元以上的D.对其他投标人、招标人等投标招标活动的参加人采取威胁、欺骗、贿赂等非法手段,或者盗用其他单位名义投标的5.根据《湖南省卫生计生委关于进一步调整完善医疗机构药品配备使用政策的通知》,“要进一步提供网上交易系统优化服务,设立价格倒挂产品上报专区,确保医疗机构药品网上采购系统访问快捷、页面简洁、操作便捷”属于进一步加强工作保障中的(C)。【阅读全文】
wso | 2019-01-15 | 阅读(421) | 评论(534)
跟踪训练4 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;解答解 记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.故所求概率为 离散型随机变量的均值第2章 随机变量的均值和方差学习目标1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量的均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量的取值水平,解决一些相关的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 离散型随机变量的均值或数学期望设有12个西瓜,其中4个重5kg,3个重6kg,5个重7kg.思考1 任取1个西瓜,用X表示这个西瓜的重量,试问X可以取哪些值?答案答案 X=5,6,7.思考2 当X取上述值时,对应的概率分别是多少?答案思考3 如何求每个西瓜的平均重量?答案(1)数学期望:E(X)=μ=.(2)性质①pi≥0,i=1,2,…,n;②p1+p2+…+pn=1.(3)数学期望的含义:它反映了离散型随机变量取值的.Xx1x2…xnPp1p2…pn离散型随机变量的均值或数学期望一般地,若离散型随机变量X的概率分布如下表:梳理x1p1+x2p2+…+xnpn平均水平知识点二 两点分布、超几何分布、二项分布的均值1.两点分布:若X~0-1分布,则E(X)=.2.超几何分布:若X~H(n,M,N),则E(X)=.3.二项分布:若X~B(n,p),则E(X)=.pnp题型探究命题角度1 一般离散型随机变量的均值例1 某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分,假设这名同学回答正确的概率均为,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分X的概率分布和均值;解答类型一 离散型随机变量的均值解 X的可能取值为-300,-100,100,(X=-300)==,P(X=300)==,所以X的概率分布如下表:X-300-所以E(X)=(-300)×+(-100)×+100×+300×=180(分).(2)求这名同学总得分不为负分(即X≥0)的概率.解 这名同学总得分不为负分的概率为P(X≥0)=P(X=100)+P(X=300)=+=解答求随机变量X的均值的方法和步骤(1)理解随机变量X的意义,写出X所有可能的取值.(2)求出X取每个值的概率P(X=k).(3)写出X的分布列.(4)利用均值的定义求E(X).反思与感悟跟踪训练1 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元,20个奖品是25元,5个奖品是100元.在不考虑获利的前提下,一张彩票的合理价格是多少元?解答解 设一张彩票的中奖额为随机变量X,显然X的所有可能取值为0,5,25,100.依题意X的概率分布如下表:=,所以一张彩票的合理价格是元.命题角度2 二项分布与两点分布的均值例2 某运动员投篮命中率为p=(1)求投篮1次命中次数X的均值;解 投篮1次,命中次数X的概率分布如下表:解答则E(X)=(2)求重复5次投篮,命中次数Y的均值.解 由题意知,重复5次投篮,命中次数Y服从二项分布,即Y~B(5,),E(Y)=np=5×=3.解答引申探究在重复5次投篮时,命中次数为Y,随机变量η=5Y+2.求E(η).解 E(η)=E(5Y+2)=5E(Y)+2=5×3+2=17.解答(1)常见的两种分布的均值设p为一次试验中成功的概率,则①两点分布E(X)=p;②二项分布E(X)=np.熟练应用上述两公式可大大减少运算量,提高解题速度.(2)两点分布与二项分布辨析①相同点:一次试验中要么发生要么不发生.②不【阅读全文】
3qc | 2019-01-15 | 阅读(590) | 评论(922)
唐宋时期,由于经济和文化的发展,新药和外来药日益增多,唐政府在显庆四年(年)颁行了世界上第一部由政府颁发的药典《新修本草》,书分卷,载药种【阅读全文】
利来最给利的网站,利来最给利的网站,利来最给利的网站,利来最给利的网站,利来最给利的网站,利来最给利的网站
u3t | 2019-01-15 | 阅读(767) | 评论(832)
跟踪训练4 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;解答解 记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.故所求概率为 离散型随机变量的均值第2章 随机变量的均值和方差学习目标1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量的均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量的取值水平,解决一些相关的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 离散型随机变量的均值或数学期望设有12个西瓜,其中4个重5kg,3个重6kg,5个重7kg.思考1 任取1个西瓜,用X表示这个西瓜的重量,试问X可以取哪些值?答案答案 X=5,6,7.思考2 当X取上述值时,对应的概率分别是多少?答案思考3 如何求每个西瓜的平均重量?答案(1)数学期望:E(X)=μ=.(2)性质①pi≥0,i=1,2,…,n;②p1+p2+…+pn=1.(3)数学期望的含义:它反映了离散型随机变量取值的.Xx1x2…xnPp1p2…pn离散型随机变量的均值或数学期望一般地,若离散型随机变量X的概率分布如下表:梳理x1p1+x2p2+…+xnpn平均水平知识点二 两点分布、超几何分布、二项分布的均值1.两点分布:若X~0-1分布,则E(X)=.2.超几何分布:若X~H(n,M,N),则E(X)=.3.二项分布:若X~B(n,p),则E(X)=.pnp题型探究命题角度1 一般离散型随机变量的均值例1 某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分,假设这名同学回答正确的概率均为,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分X的概率分布和均值;解答类型一 离散型随机变量的均值解 X的可能取值为-300,-100,100,(X=-300)==,P(X=300)==,所以X的概率分布如下表:X-300-所以E(X)=(-300)×+(-100)×+100×+300×=180(分).(2)求这名同学总得分不为负分(即X≥0)的概率.解 这名同学总得分不为负分的概率为P(X≥0)=P(X=100)+P(X=300)=+=解答求随机变量X的均值的方法和步骤(1)理解随机变量X的意义,写出X所有可能的取值.(2)求出X取每个值的概率P(X=k).(3)写出X的分布列.(4)利用均值的定义求E(X).反思与感悟跟踪训练1 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元,20个奖品是25元,5个奖品是100元.在不考虑获利的前提下,一张彩票的合理价格是多少元?解答解 设一张彩票的中奖额为随机变量X,显然X的所有可能取值为0,5,25,100.依题意X的概率分布如下表:=,所以一张彩票的合理价格是元.命题角度2 二项分布与两点分布的均值例2 某运动员投篮命中率为p=(1)求投篮1次命中次数X的均值;解 投篮1次,命中次数X的概率分布如下表:解答则E(X)=(2)求重复5次投篮,命中次数Y的均值.解 由题意知,重复5次投篮,命中次数Y服从二项分布,即Y~B(5,),E(Y)=np=5×=3.解答引申探究在重复5次投篮时,命中次数为Y,随机变量η=5Y+2.求E(η).解 E(η)=E(5Y+2)=5E(Y)+2=5×3+2=17.解答(1)常见的两种分布的均值设p为一次试验中成功的概率,则①两点分布E(X)=p;②二项分布E(X)=np.熟练应用上述两公式可大大减少运算量,提高解题速度.(2)两点分布与二项分布辨析①相同点:一次试验中要么发生要么不发生.②不【阅读全文】
4yu | 2019-01-14 | 阅读(565) | 评论(363)
跟踪训练4 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;解答解 记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.故所求概率为 离散型随机变量的均值第2章 随机变量的均值和方差学习目标1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量的均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量的取值水平,解决一些相关的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 离散型随机变量的均值或数学期望设有12个西瓜,其中4个重5kg,3个重6kg,5个重7kg.思考1 任取1个西瓜,用X表示这个西瓜的重量,试问X可以取哪些值?答案答案 X=5,6,7.思考2 当X取上述值时,对应的概率分别是多少?答案思考3 如何求每个西瓜的平均重量?答案(1)数学期望:E(X)=μ=.(2)性质①pi≥0,i=1,2,…,n;②p1+p2+…+pn=1.(3)数学期望的含义:它反映了离散型随机变量取值的.Xx1x2…xnPp1p2…pn离散型随机变量的均值或数学期望一般地,若离散型随机变量X的概率分布如下表:梳理x1p1+x2p2+…+xnpn平均水平知识点二 两点分布、超几何分布、二项分布的均值1.两点分布:若X~0-1分布,则E(X)=.2.超几何分布:若X~H(n,M,N),则E(X)=.3.二项分布:若X~B(n,p),则E(X)=.pnp题型探究命题角度1 一般离散型随机变量的均值例1 某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分,假设这名同学回答正确的概率均为,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分X的概率分布和均值;解答类型一 离散型随机变量的均值解 X的可能取值为-300,-100,100,(X=-300)==,P(X=300)==,所以X的概率分布如下表:X-300-所以E(X)=(-300)×+(-100)×+100×+300×=180(分).(2)求这名同学总得分不为负分(即X≥0)的概率.解 这名同学总得分不为负分的概率为P(X≥0)=P(X=100)+P(X=300)=+=解答求随机变量X的均值的方法和步骤(1)理解随机变量X的意义,写出X所有可能的取值.(2)求出X取每个值的概率P(X=k).(3)写出X的分布列.(4)利用均值的定义求E(X).反思与感悟跟踪训练1 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元,20个奖品是25元,5个奖品是100元.在不考虑获利的前提下,一张彩票的合理价格是多少元?解答解 设一张彩票的中奖额为随机变量X,显然X的所有可能取值为0,5,25,100.依题意X的概率分布如下表:=,所以一张彩票的合理价格是元.命题角度2 二项分布与两点分布的均值例2 某运动员投篮命中率为p=(1)求投篮1次命中次数X的均值;解 投篮1次,命中次数X的概率分布如下表:解答则E(X)=(2)求重复5次投篮,命中次数Y的均值.解 由题意知,重复5次投篮,命中次数Y服从二项分布,即Y~B(5,),E(Y)=np=5×=3.解答引申探究在重复5次投篮时,命中次数为Y,随机变量η=5Y+2.求E(η).解 E(η)=E(5Y+2)=5E(Y)+2=5×3+2=17.解答(1)常见的两种分布的均值设p为一次试验中成功的概率,则①两点分布E(X)=p;②二项分布E(X)=np.熟练应用上述两公式可大大减少运算量,提高解题速度.(2)两点分布与二项分布辨析①相同点:一次试验中要么发生要么不发生.②不【阅读全文】
z2z | 2019-01-14 | 阅读(646) | 评论(948)
健全完善镇、村居层面区域化党建平台和经常性联系沟通机制,结合推进全国文明城区创建等重点工作,今年召开各类区域化党建联席会议x次,x家驻区单位、x名在职党员到村居报到,形成x个社区共治项目。【阅读全文】
ol2 | 2019-01-14 | 阅读(754) | 评论(605)
ANAUSTRALIANGOVERNMENTINITIATIVEBullyingamongyoungchildrenAguideforparentsAcknowledgmentsThisbookletisoneelementofaprojectfundedbytheAustralianGovernment’:AndreaRankin,JeanRigby,RosShute,PhillipSlee,GillWesthop,,,‘Children’sperpetrationofviolenceinearlychildhood:beyondconflict’.Paperpresentedatthe‘ChildrenandCrime:VictimsandOffendersConference’.AustralianInstituteofCriminology,Brisbane,,,‘Bullyingandhowtofightit’.TheScottishCouncilforResearchinEducation,Glasgow,:KenRigbyAdjunctAssociateProfessorSchoolofEducationUniversityofSouthAustraliaToorderanyNationalCrimePreventionpublicationspleasecontact:CrimePreventionBranchAustralianGovernmentAttorney-General’sDepartmentRobertGarranOfficesNationalCircuitBARTONACT2600Ph:+61262506711Fax:+61262730913Publicationsarealsoavailableat..auBullyingamongyoungchildren:AguideforparentsAustralianGovernmentAttorney-General’sDepartment,CanberraCommonwealthofAustraliaDecember2003ISBN0642210292Bullyingamongyoungchildren:AguideforparentsTheviewsexpressedinthispublicationarethoseoftheautation,:ISBN0642210306Bullyingamongyoungchildren:AguideforteachersandcarersISBN0642210403Ameta-evaluationofmethods【阅读全文】
dzq | 2019-01-14 | 阅读(252) | 评论(350)
前言目录第一章函数函数的概念与性质反函数复合函数初等函数常用的经济函数第二章极限与连续极限无穷小量与无穷大量极限的运算法则两个重要极限函数的连续性第三章导数与微分导数概念导数的基本公式与运算法则高阶导数微分第四章导数的应用中值定理罗必塔法则函数的单调性函数的极值函数的最大值与最小值导数在经济学中的应用曲线的凹向与拐点函数图形的描绘第五章不定积分不定积分的概念基本积分公式换元积分法分部积分法特殊类型积分不定积分在经济问题中的应用积分表的使用第六章定积分定积分的概念定积分的基本性质微积分基本定理定积分的换元积分法定积分的分部积分法广义积分定积分的应用第七章无穷级数常数项级数的概念和性质常数项级数的审敛法幂级数函数的幂级数展开式幂级数的应用第八章多元函数空间解析简介多元函数概念与极限偏导数【阅读全文】
izl | 2019-01-13 | 阅读(17) | 评论(283)
习题课离散型随机变量的方差与标准差第2章 概率学习目标1.进一步理解离散型随机变量的方差的概念.2.熟练应用公式及性质求随机变量的方差.3.体会均值和方差在决策中的应用.题型探究知识梳理内容索引当堂训练知识梳理1.方差、标准差的定义及方差的性质(1)方差及标准差的定义:设离散型随机变量X的概率分布为Xx1x2…xi…xnPp1p2…pi…pn①方差V(X)=(x1-μ)2p1+(x2-μ)2p2+…+(xn-μ)2pn.(其中μ=E(X))②标准差为.(2)方差的性质:V(aX+b)=.a2V(X)2.两个常见分布的方差(1)两点分布:若X~0-1分布,则V(X)=;(2)二项分布:若X~B(n,p),则V(X)=.p(1-p)np(1-p)题型探究例1 一出租车司机从某饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率是(1)求这位司机遇到红灯数ξ的均值与方差;解 易知司机遇上红灯次数ξ服从二项分布,解答类型一 二项分布的方差问题(2)若遇上红灯,则需等待30s,求司机总共等待时间η的均值与方差.解 由已知η=30ξ,故E(η)=30E(ξ)=60,V(η)=900V(ξ)=1200.解答解决此类问题的第一步是判断随机变量服从什么分布,第二步代入相应的公式求解.若它服从两点分布,则方差为p(1-p);若它服从二项发布,则方差为np(1-p).反思与感悟跟踪训练1 在某地举办的射击比赛中,规定每位射手射击10次,每次一发.记分的规则为:击中目标一次得3分;未击中目标得0分;并且凡参赛的射手一律另加2分.已知射手小李击中目标的概率为,求小李在比赛中得分的均值与方差.解 用ξ表示小李击中目标的次数,η表示他的得分,则由题意知ξ~B(10,),η=3ξ+2.因为E(ξ)=10×=8,V(ξ)=10××=,所以E(η)=E(3ξ+2)=3E(ξ)+2=3×8+2=26,V(η)=V(3ξ+2)=32×V(ξ)=9×=解答例2 某投资公司在2017年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率为项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.类型二 均值、方差在决策中的应用解答解 若按项目一投资,设获利X1万元,则X1的概率分布如下表:=35000,若按项目二投资,设获利X2万元,则X2的概率分布如下表:∴E(X1)=E(X2),V(X1)<V(X2),这说明虽然项目一、项目二获利相等,但项目一更稳妥.综上所述,建议该投资公司选择项目一投资.离散型随机变量的均值反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此在实际决策问题中,需先运算均值,看一下谁的平均水平高,然后再计算方差,分析一下谁的水平发挥相对稳定,当然不同的模型要求不同,应视情况而定.反思与感悟跟踪训练2 已知甲、乙两名射手在每次射击中击中的环数均大于6,且甲射中10,9,8,7环的概率分别为,3a,a,,乙射中10,9,8环的概率分别为,,记甲射中的环数为ξ,乙射中的环数为η.(1)求ξ,η的概率分布;解答解 依据题意知,+3a+a+=1,解得a=∵乙射中10,9,8环的概率分别为,,,∴乙射中7环的概率为1-(++)=∴ξ,η的概率分布分别为ξη(2)求ξ,η的均值与方差,并以此比较甲、乙的射击技术.解 结合(1)中ξ,η的概率分布,可得E(ξ)=10×+9×+8×+7×=,E(η)=10×+9×+8×+7×=,V(ξ)=(10-)2×+(9-)2×+(8-)2×+(7-)2×=,V(η)=(10-)2×+(9-)2×+(8-)2×+(7-8【阅读全文】
xuk | 2019-01-13 | 阅读(784) | 评论(181)
根据方程组的情况,能恰当地运用“代入消元法”解方程组;2、通过观察,分析和归纳给出的感性材料,发现并掌握消元的化归思想,培养学生的观察、分析、概括等能力;培养用二元一次方程组解决实际生活中的问题的能力和口头表达能力;3、培养学生合作意识和勇于探索的精神,让学生在探索的过程中,发现并掌握化归思想,获得成功的喜悦,感受化归思想的广泛【阅读全文】
共5页

友情链接,当前时间:2019-01-16

利来娱乐 利来国际w66备用 利来国际最给力的老牌 利来国际手机版 w66利来国际手机app
利来老牌 wwww66com利来 利来电游官方网站 利来国际w66平台 利来电游官方网站
利来ag旗舰厅手机版 w66.com w66利来国际 利来娱乐备用 利来最给利的网站
利来娱乐国际最给利老牌网站是什么 利来娱乐网址 利来国际游戏平台 利来娱乐帐户 利来娱乐
阿坝| 开原市| 荃湾区| 阜城县| 天台县| 磐石市| 墨江| 甘南县| 富蕴县| 阜城县| 鹤壁市| 久治县| 集贤县| 庄河市| 平湖市| 万州区| 竹北市| 剑河县| 云南省| 大悟县| 河源市| 阳朔县| 武城县| 樟树市| 库尔勒市| 龙江县| 黄平县| 鄯善县| 武清区| 鸡东县| 玉屏| 普格县| 颍上县| 疏勒县| 常德市| 获嘉县| 金秀| 耒阳市| 卫辉市| 志丹县| 沂水县| http://m.97298825.cn http://m.34617067.cn http://m.63147920.cn http://m.59716595.cn http://m.24419484.cn http://m.66703245.cn